Academic Papers on Observed Speciation (Plants as well as Animals)

This rather detailed page provides a fire hose of articles on recent speciation and even artifiicially induced speciation - - ranging from bacteria to plants! It is not an empty field. So for those who keep talking about no examples of macroevolution (macro-evolution), spend a few hours on this material… and then come back with your cherry picking…

The Talk.Origins Archive: Exploring the Creation/Evolution Controversy
Observed Instances of Speciation
by Joseph Boxhorn , Copyright © 1993-1995

[Sections 1.0 to 3.x truncated]

4.0 Telling Whether a Speciation Event Has Occurred
What evidence is necessary to show that a change produced in a population of organisms constitutes a speciation event? The answer to this question will depend on which species definition applies to the organisms involved.

4.1 Cases Where the Biological Species Concept Applies
One advantage of the BSC is that it provides a reasonably unambiguous test that can be applied to possible speciation events. Recall that under the BSC species are defined as being reproductively isolated from other species. Demonstrating that a population is reproductively isolated (in a nontrivial way) from populations that it was formerly able to interbreed with shows that speciation has occurred. In practice, it is also necessary to show that at least one isolating mechanism with a hereditary basis is present. After all, just because a pair of critters don’t breed during an experiment doesn’t mean they can’t breed or even that they won’t breed. Debates about whether a speciation event has occurred often turn on whether isolating mechanisms have been produced.

4.1.1 Isolating Mechanisms
[TRUNCATED]

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
NON-PLANT EXAMPLES MOVED TO THE TOP OF THE DISCUSSION
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5.4 Housefly Speciation Experiments

5.4.1 A Test of the Founder-flush Hypothesis Using Houseflies
Meffert and Bryant (1991) used houseflies to test whether bottlenecks in populations can cause permanent alterations in courtship behavior that lead to premating isolation. They collected over 100 flies of each sex from a landfill near Alvin, Texas. These were used to initiate an ancestral population. From this ancestral population they established six lines. Two of these lines were started with one pair of flies, two lines were started with four pairs of flies and two lines were started with sixteen pairs of flies. These populations were flushed to about 2,000 flies each. They then went through five bottlenecks followed by flushes. This took 35 generations. Mate choice tests were performed. One case of positive assortative mating was found. One case of negative assortative mating was also found.

5.4.2 Selection for Geotaxis with and without Gene Flow
Soans, et al. (1974) used houseflies to test Pimentel’s model of speciation. This model posits that speciation requires two steps. The first is the formation of races in subpopulations. This is followed by the establishment of reproductive isolation. Houseflies were subjected to intense divergent selection on the basis of positive and negative geotaxis. In some treatments no gene flow was allowed, while in others there was 30% gene flow. Selection was imposed by placing 1000 flies into the center of a 108 cm vertical tube. The first 50 flies that reached the top and the first 50 flies that reached the bottom were used to found positively and negatively geotactic populations. Four populations were established:

Population A + geotaxis, no gene flow
Population B - geotaxis, no gene flow
Population C + geotaxis, 30% gene flow
Population D - geotaxis, 30% gene flow

Selection was repeated within these populations each generations. After 38 generations the time to collect 50 flies had dropped from 6 hours to 2 hours in Pop A, from 4 hours to 4 minutes in Pop B, from 6 hours to 2 hours in Pop C and from 4 hours to 45 minutes in Pop D. Mate choice tests were performed. Positive assortative mating was found in all crosses. They concluded that reproductive isolation occurred under both allopatric and sympatric conditions when very strong selection was present. Hurd and Eisenberg (1975) performed a similar experiment on houseflies using 50% gene flow and got the same results.

5.5 Speciation Through Host Race Differentiation
Recently there has been a lot of interest in whether the differentiation of an herbivorous or parasitic species into races living on different hosts can lead to sympatric speciation. It has been argued that in animals that mate on (or in) their preferred hosts, positive assortative mating is an inevitable byproduct of habitat selection (Rice 1985; Barton, et al. 1988). This would suggest that differentiated host races may represent incipient species.

5.5.1 Apple Maggot Fly (Rhagoletis pomonella)
Rhagoletis pomonella is a fly that is native to North America. Its normal host is the hawthorn tree. Sometime during the nineteenth century it began to infest apple trees. Since then it has begun to infest cherries, roses, pears and possibly other members of the rosaceae. Quite a bit of work has been done on the differences between flies infesting hawthorn and flies infesting apple. There appear to be differences in host preferences among populations. Offspring of females collected from on of these two hosts are more likely to select that host for oviposition (Prokopy et al. 1988). Genetic differences between flies on these two hosts have been found at 6 out of 13 allozyme loci (Feder et al. 1988, see also McPheron et al. 1988). Laboratory studies have shown an asynchrony in emergence time of adults between these two host races (Smith 1988). Flies from apple trees take about 40 days to mature, whereas flies from hawthorn trees take 54-60 days to mature. This makes sense when we consider that hawthorn fruit tends to mature later in the season that apples. Hybridization studies show that host preferences are inherited, but give no evidence of barriers to mating. This is a very exciting case. It may represent the early stages of a sympatric speciation event (considering the dispersal of R. pomonella to other plants it may even represent the beginning of an adaptive radiation). It is important to note that some of the leading researchers on this question are urging caution in interpreting it. Feder and Bush (1989) stated:

“Hawthorn and apple “host races” of R. pomonella may therefore represent incipient species. However, it remains to be seen whether host-associated traits can evolve into effective enough barriers to gene flow to result eventually in the complete reproductive isolation of R. pomonella populations.”

5.5.2 Gall Former Fly (Eurosta solidaginis)
Eurosta solidaginis is a gall forming fly that is associated with goldenrod plants. It has two hosts: over most of its range it lays its eggs in Solidago altissima, but in some areas it uses S. gigantea as its host. Recent electrophoretic work has shown that the genetic distances among flies from different sympatric hosts species are greater than the distances among flies on the same host in different geographic areas (Waring et al. 1990). This same study also found reduced variability in flies on S. gigantea. This suggests that some E. solidaginis have recently shifted hosts to this species. A recent study has compared reproductive behavior of the flies associated with the two hosts (Craig et al. 1993). They found that flies associated with S. gigantea emerge earlier in the season than flies associated with S. altissima. In host choice experiments, each fly strain ovipunctured its own host much more frequently than the other host. Craig et al. (1993) also performed several mating experiments. When no host was present and females mated with males from either strain, if males from only one strain were present. When males of both strains were present, statistically significant positive assortative mating was seen. In the presence of a host, assortative mating was also seen. When both hosts and flies from both populations were present, females waited on the buds of the host that they are normally associated with. The males fly to the host to mate. Like the Rhagoletis case above, this may represent the beginning of a sympatric speciation.

5.6 Flour Beetles (Tribolium castaneum)
Halliburton and Gall (1981) established a population of flour beetles collected in Davis, California. In each generation they selected the 8 lightest and the 8 heaviest pupae of each sex. When these 32 beetles had emerged, they were placed together and allowed to mate for 24 hours. Eggs were collected for 48 hours. The pupae that developed from these eggs were weighed at 19 days. This was repeated for 15 generations. The results of mate choice tests between heavy and light beetles was compared to tests among control lines derived from randomly chosen pupae. Positive assortative mating on the basis of size was found in 2 out of 4 experimental lines.

5.7 Speciation in a Lab Rat Worm, Nereis acuminata
In 1964 five or six individuals of the polychaete worm, Nereis acuminata, were collected in Long Beach Harbor, California. These were allowed to grow into a population of thousands of individuals. Four pairs from this population were transferred to the Woods Hole Oceanographic Institute. For over 20 years these worms were used as test organisms in environmental toxicology. From 1986 to 1991 the Long Beach area was searched for populations of the worm. Two populations, P1 and P2, were found. Weinberg, et al. (1992) performed tests on these two populations and the Woods Hole population (WH) for both postmating and premating isolation. To test for postmating isolation, they looked at whether broods from crosses were successfully reared. The results below give the percentage of successful rearings for each group of crosses.

WH × WH - 75%
P1 × P1 - 95%
P2 × P2 - 80%
P1 × P2 - 77%
WH × P1 - 0%
WH × P2 - 0%

They also found statistically significant premating isolation between the WH population and the field populations. Finally, the Woods Hole population showed slightly different karyotypes from the field populations.

5.8 Speciation Through Cytoplasmic Incompatability Resulting from the Presence of a Parasite or Symbiont
In some species the presence of intracellular bacterial parasites (or symbionts) is associated with postmating isolation. This results from a cytoplasmic incompatability between gametes from strains that have the parasite (or symbiont) and stains that don’t. An example of this is seen in the mosquito Culex pipiens (Yen and Barr 1971). Compared to within strain matings, matings between strains from different geographic regions may may have any of three results: These matings may produce a normal number of offspring, they may produce a reduced number of offspring or they may produce no offspring. Reciprocal crosses may give the same or different results. In an incompatible cross, the egg and sperm nuclei fail to unite during fertilization. The egg dies during embryogenesis. In some of these strains, Yen and Barr (1971) found substantial numbers of Rickettsia-like microbes in adults, eggs and embryos. Compatibility of mosquito strains seems to be correlated with the strain of the microbe present. Mosquitoes that carry different strains of the microbe exhibit cytoplasmic incompatibility; those that carry the same strain of microbe are interfertile.

Similar phenomena have been seen in a number of other insects. Microoganisms are seen in the eggs of both Nasonia vitripennis and N. giraulti. These two species do not normally hybridize. Following treatment with antibiotics, hybrids occur between them (Breeuwer and Werren 1990). In this case, the symbiont is associated with improper condensation of host chromosomes.

For more examples and a critical review of this topic, see Thompson 1987.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
NON-PLANT EXAMPLES ABOVE ^^

PLANTLIFE EXAMPLES BELOW
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

5.0 Observed Instances of Speciation
The following are several examples of observations of speciation.

5.1.1 Plants (See also the discussion in de Wet 1971).
5.1.1.1 Evening Primrose (Oenothera gigas)
While studying the genetics of the evening primrose, Oenothera lamarckiana, de Vries (1905) found an unusual variant among his plants. O. lamarckiana has a chromosome number of 2N = 14. The variant had a chromosome number of 2N = 28. He found that he was unable to breed this variant with O. lamarckiana. He named this new species O. gigas.

5.1.1.2 Kew Primrose (Primula kewensis)
Digby (1912) crossed the primrose species Primula verticillata and P. floribunda to produce a sterile hybrid. Polyploidization occurred in a few of these plants to produce fertile offspring. The new species was named P. kewensis. Newton and Pellew (1929) note that spontaneous hybrids of P. verticillata and P. floribunda set tetraploid seed on at least three occasions. These happened in 1905, 1923 and 1926.

5.1.1.3 Tragopogon
Owenby (1950) demonstrated that two species in this genus were produced by polyploidization from hybrids. He showed that Tragopogon miscellus found in a colony in Moscow, Idaho was produced by hybridization of T. dubius and T. pratensis. He also showed that T. mirus found in a colony near Pullman, Washington was produced by hybridization of T. dubius and T. porrifolius. Evidence from chloroplast DNA suggests that T. mirus has originated independently by hybridization in eastern Washington and western Idaho at least three times (Soltis and Soltis 1989). The same study also shows multiple origins for T. micellus.

5.1.1.4 Raphanobrassica
The Russian cytologist Karpchenko (1927, 1928) crossed the radish, Raphanus sativus, with the cabbage, Brassica oleracea. Despite the fact that the plants were in different genera, he got a sterile hybrid. Some unreduced gametes were formed in the hybrids. This allowed for the production of seed. Plants grown from the seeds were interfertile with each other. They were not interfertile with either parental species. Unfortunately the new plant (genus Raphanobrassica) had the foliage of a radish and the root of a cabbage.

5.1.1.5 Hemp Nettle (Galeopsis tetrahit)
A species of hemp nettle, Galeopsis tetrahit, was hypothesized to be the result of a natural hybridization of two other species, G. pubescens and G. speciosa (Muntzing 1932). The two species were crossed. The hybrids matched G. tetrahit in both visible features and chromosome morphology.

5.1.1.6 Madia citrigracilis
Along similar lines, Clausen et al. (1945) hypothesized that Madia citrigracilis was a hexaploid hybrid of M. gracilis and M. citriodora As evidence they noted that the species have gametic chromosome numbers of n = 24, 16 and 8 respectively. Crossing M. gracilis and M. citriodora resulted in a highly sterile triploid with n = 24. The chromosomes formed almost no bivalents during meiosis. Artificially doubling the chromosome number using colchecine produced a hexaploid hybrid which closely resembled M. citrigracilis and was fertile.

5.1.1.7 Brassica
Frandsen (1943, 1947) was able to do this same sort of recreation of species in the genus Brassica (cabbage, etc.). His experiments showed that B. carinata (n = 17) may be recreated by hybridizing B. nigra (n = 8) and B. oleracea, B. juncea (n = 18) may be recreated by hybridizing B. nigra and B. campestris (n = 10), and B. napus (n = 19) may be recreated by hybridizing B. oleracea and B. campestris.

5.1.1.8 Maidenhair Fern (Adiantum pedatum)
Rabe and Haufler (1992) found a naturally occurring diploid sporophyte of maidenhair fern which produced unreduced (2N) spores. These spores resulted from a failure of the paired chromosomes to dissociate during the first division of meiosis. The spores germinated normally and grew into diploid gametophytes. These did not appear to produce antheridia. Nonetheless, a subsequent generation of tetraploid sporophytes was produced. When grown in the lab, the tetraploid sporophytes appear to be less vigorous than the normal diploid sporophytes. The 4N individuals were found near Baldwin City, Kansas.

5.1.1.9 Woodsia Fern (Woodsia abbeae)
Woodsia abbeae was described as a hybrid of W. cathcariana and W. ilvensis (Butters 1941). Plants of this hybrid normally produce abortive sporangia containing inviable spores. In 1944 Butters found a W. abbeae plant near Grand Portage, Minn. that had one fertile frond (Butters and Tryon 1948). The apical portion of this frond had fertile sporangia. Spores from this frond germinated and grew into prothallia. About six months after germination sporophytes were produced. They survived for about one year. Based on cytological evidence, Butters and Tryon concluded that the frond that produced the viable spores had gone tetraploid. They made no statement as to whether the sporophytes grown produced viable spores.

5.1.2 Animals
Speciation through hybridization and/or polyploidy has long been considered much less important in animals than in plants [[[refs.]]]. A number of reviews suggest that this view may be mistaken. (Lokki and Saura 1980; Bullini and Nascetti 1990; Vrijenhoek 1994). Bullini and Nasceti (1990) review chromosomal and genetic evidence that suggest that speciation through hybridization may occur in a number of insect species, including walking sticks, grasshoppers, blackflies and cucurlionid beetles. Lokki and Saura (1980) discuss the role of polyploidy in insect evolution. Vrijenhoek (1994) reviews the literature on parthenogenesis and hybridogenesis in fish. I will tackle this topic in greater depth in the next version of this document.

5.2 Speciations in Plant Species not Involving Hybridization or Polyploidy

5.2.1 Stephanomeira malheurensis
Gottlieb (1973) documented the speciation of Stephanomeira malheurensis. He found a single small population (< 250 plants) among a much larger population (> 25,000 plants) of S. exigua in Harney Co., Oregon. Both species are diploid and have the same number of chromosomes (N = 8). S. exigua is an obligate outcrosser exhibiting sporophytic self-incompatibility. S. malheurensis exhibits no self-incompatibility and self-pollinates. Though the two species look very similar, Gottlieb was able to document morphological differences in five characters plus chromosomal differences. F1 hybrids between the species produces only 50% of the seeds and 24% of the pollen that conspecific crosses produced. F2 hybrids showed various developmental abnormalities.

5.2.2 Maize (Zea mays)
Pasterniani (1969) produced almost complete reproductive isolation between two varieties of maize. The varieties were distinguishable by seed color, white versus yellow. Other genetic markers allowed him to identify hybrids. The two varieties were planted in a common field. Any plant’s nearest neighbors were always plants of the other strain. Selection was applied against hybridization by using only those ears of corn that showed a low degree of hybridization as the source of the next years seed. Only parental type kernels from these ears were planted. The strength of selection was increased each year. In the first year, only ears with less than 30% intercrossed seed were used. In the fifth year, only ears with less than 1% intercrossed seed were used. After five years the average percentage of intercrossed matings dropped from 35.8% to 4.9% in the white strain and from 46.7% to 3.4% in the yellow strain.

5.2.3 Speciation as a Result of Selection for Tolerance to a Toxin: Yellow Monkey Flower (Mimulus guttatus)
At reasonably low concentrations, copper is toxic to many plant species. Several plants have been seen to develop a tolerance to this metal (Macnair 1981). Macnair and Christie (1983) used this to examine the genetic basis of a postmating isolating mechanism in yellow monkey flower. When they crossed plants from the copper tolerant “Copperopolis” population with plants from the nontolerant “Cerig” population, they found that many of the hybrids were inviable. During early growth, just after the four leaf stage, the leaves of many of the hybrids turned yellow and became necrotic. Death followed this. This was seen only in hybrids between the two populations. Through mapping studies, the authors were able to show that the copper tolerance gene and the gene responsible for hybrid inviability were either the same gene or were very tightly linked. These results suggest that reproductive isolation may require changes in only a small number of genes.

5.3 The Fruit Fly Literature

5.3.1 Drosophila paulistorum
Dobzhansky and Pavlovsky (1971) reported a speciation event that occurred in a laboratory culture of Drosophila paulistorum sometime between 1958 and 1963. The culture was descended from a single inseminated female that was captured in the Llanos of Colombia. In 1958 this strain produced fertile hybrids when crossed with conspecifics of different strains from Orinocan. From 1963 onward crosses with Orinocan strains produced only sterile males. Initially no assortative mating or behavioral isolation was seen between the Llanos strain and the Orinocan strains. Later on Dobzhansky produced assortative mating (Dobzhansky 1972).

5.3.2 Disruptive Selection on Drosophila melanogaster
Thoday and Gibson (1962) established a population of Drosophila melanogaster from four gravid females. They applied selection on this population for flies with the highest and lowest numbers of sternoplural chaetae (hairs). In each generation, eight flies with high numbers of chaetae were allowed to interbreed and eight flies with low numbers of chaetae were allowed to interbreed. Periodically they performed mate choice experiments on the two lines. They found that they had produced a high degree of positive assortative mating between the two groups. In the decade or so following this, eighteen labs attempted unsuccessfully to reproduce these results. References are given in Thoday and Gibson 1970.

5.3.3 Selection on Courtship Behavior in Drosophila melanogaster
Crossley (1974) was able to produce changes in mating behavior in two mutant strains of D. melanogaster. Four treatments were used. In each treatment, 55 virgin males and 55 virgin females of both ebony body mutant flies and vestigial wing mutant flies (220 flies total) were put into a jar and allowed to mate for 20 hours. The females were collected and each was put into a separate vial. The phenotypes of the offspring were recorded. Wild type offspring were hybrids between the mutants. In two of the four treatments, mating was carried out in the light. In one of these treatments all hybrid offspring were destroyed. This was repeated for 40 generations. Mating was carried out in the dark in the other two treatments. Again, in one of these all hybrids were destroyed. This was repeated for 49 generations. Crossley ran mate choice tests and observed mating behavior. Positive assortative mating was found in the treatment which had mated in the light and had been subject to strong selection against hybridization. The basis of this was changes in the courtship behaviors of both sexes. Similar experiments, without observation of mating behavior, were performed by Knight, et al. (1956).

5.3.4 Sexual Isolation as a Byproduct of Adaptation to Environmental Conditions in Drosophila melanogaster
Kilias, et al. (1980) exposed D. melanogaster populations to different temperature and humidity regimes for several years. They performed mating tests to check for reproductive isolation. They found some sterility in crosses among populations raised under different conditions. They also showed some positive assortative mating. These things were not observed in populations which were separated but raised under the same conditions. They concluded that sexual isolation was produced as a byproduct of selection.

5.3.5 Sympatric Speciation in Drosophila melanogaster
In a series of papers (Rice 1985, Rice and Salt 1988 and Rice and Salt 1990) Rice and Salt presented experimental evidence for the possibility of sympatric speciation. They started from the premise that whenever organisms sort themselves into the environment first and then mate locally, individuals with the same habitat preferences will necessarily mate assortatively. They established a stock population of D. melanogaster with flies collected in an orchard near Davis, California. Pupae from the culture were placed into a habitat maze. Newly emerged flies had to negotiate the maze to find food. The maze simulated several environmental gradients simultaneously. The flies had to make three choices of which way to go. The first was between light and dark (phototaxis). The second was between up and down (geotaxis). The last was between the scent of acetaldehyde and the scent of ethanol (chemotaxis). This divided the flies among eight habitats. The flies were further divided by the time of day of emergence. In total the flies were divided among 24 spatio-temporal habitats.

They next cultured two strains of flies that had chosen opposite habitats. One strain emerged early, flew upward and was attracted to dark and acetaldehyde. The other emerged late, flew downward and was attracted to light and ethanol. Pupae from these two strains were placed together in the maze. They were allowed to mate at the food site and were collected. Eye color differences between the strains allowed Rice and Salt to distinguish between the two strains. A selective penalty was imposed on flies that switched habitats. Females that switched habitats were destroyed. None of their gametes passed into the next generation. Males that switched habitats received no penalty. After 25 generations of this mating tests showed reproductive isolation between the two strains. Habitat specialization was also produced.

They next repeated the experiment without the penalty against habitat switching. The result was the same – reproductive isolation was produced. They argued that a switching penalty is not necessary to produce reproductive isolation. Their results, they stated, show the possibility of sympatric speciation.

[See original page for details on these sections]
5.3.6 Isolation Produced as an Incidental Effect of Selection on several Drosophila species
[truncated]

5.3.7 Selection for Reinforcement in Drosophila melanogaster
[truncated]

5.3.8 Tests of the Founder-flush Speciation Hypothesis Using Drosophila
[truncated]

[NOTE: See the original article for more details and for a very thorough list of resources!]

4 Likes

I’ll have to bookmark this page. Thanks for sharing, this’ll be really useful for when YECs say that evolution has “never been observed.” (They’ll then of course say that this is only “micro-evolution,” but this is still useful nonetheless.)

1 Like

Noteworthy points:

  1. Any genetic change is evolution, even when it is not known whether it is an addition in genetic information or loss.

  2. The most important kind of evolution is the change in reproductive compatibility … because once the free or common exchange of alleles is lost, any given population is likely to produce unique results.

  3. This is how more dramatic macro evolution is possible.

1 Like

I know! I’m a biology major, haha. The official definition for evolution is “A change in allele frequencies in a population over time.” The micro vs. macro distinction isn’t really a good one. Biologists don’t use it from what I know. So called “macro evolution” is exactly the same thing as so called “micro evolution” just over different time scales!

3 Likes

This topic was automatically closed 6 days after the last reply. New replies are no longer allowed.